skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kapteyn, Henry C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Topological materials are of great interest because they can support metallic edge or surface states that are robust against perturbations, with the potential for technological applications. Here, we experimentally explore the light-induced non-equilibrium properties of two distinct topological phases in NaCd4As3: a topological crystalline insulator (TCI) phase and a topological insulator (TI) phase. This material has surface states that are protected by mirror symmetry in the TCI phase at room temperature, while it undergoes a structural phase transition to a TI phase below 200 K. After exciting the TI phase by an ultrafast laser pulse, we observe a leading band edge shift of >150 meV that slowly builds up and reaches a maximum after ∼0.6 ps and that persists for ∼8 ps. The slow rise time of the excited electron population and electron temperature suggests that the electronic and structural orders are strongly coupled in this TI phase. It also suggests that the directly excited electronic states and the probed electronic states are weakly coupled. Both couplings are likely due to a partial relaxation of the lattice distortion, which is known to be associated with the TI phase. In contrast, no distinct excited state is observed in the TCI phase immediately or after photoexcitation, which we attribute to the low density of states and phase space available near the Fermi level. Our results show how ultrafast laser excitation can reveal the distinct excited states and interactions in phase-rich topological materials. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform—a super-resolution time-frequency analytical method—to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material. This quasi-2D system, 1T-TaSe2, supports both equilibrium and metastable light-induced charge density wave (CDW) phases mediated by strongly coupled phonons. We compare the effectiveness of the superlet transform to standard time-frequency techniques. We find that the superlet transform is superior in both time and frequency resolution, and use it to observe and validate novel physics. In particular, we show fluence-dependent changes in the coupled dynamics of three phonon modes that are similar in frequency, including the CDW amplitude mode, that clearly demonstrate a change in the dominant charge-phonon couplings. More interestingly, the frequencies of the three phonon modes, including the strongly-coupled CDW amplitude mode, remain time- and fluence-independent, which is unusual compared to previously investigated materials. Our study opens a new avenue for capturing the coherent evolution and couplings of strongly-coupled materials and quantum systems. 
    more » « less
  3. Abstract Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform—a super-resolution time-frequency analytical method—to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material. This quasi-2D system, 1T-TaSe2, supports both equilibrium and metastable light-induced charge density wave (CDW) phases mediated by strongly coupled phonons. We compare the effectiveness of the superlet transform to standard time-frequency techniques. We find that the superlet transform is superior in both time and frequency resolution, and use it to observe and validate novel physics. In particular, we show fluence-dependent changes in the coupled dynamics of three phonon modes that are similar in frequency, including the CDW amplitude mode, that clearly demonstrate a change in the dominant charge-phonon couplings. More interestingly, the frequencies of the three phonon modes, including the strongly-coupled CDW amplitude mode, remain time- and fluence-independent, which is unusual compared to previously investigated materials. Our study opens a new avenue for capturing the coherent evolution and couplings of strongly-coupled materials and quantum systems. 
    more » « less
  4. Phased-necklace driving beams enable precise coherent control over the line spacing and divergence of EUV/soft x-ray harmonics. 
    more » « less
  5. null (Ed.)
  6. Light fields carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical communications, microscopy, quantum optics, and microparticle manipulation. We introduce a property of light beams, manifested as a temporal OAM variation along a pulse: the self-torque of light. Although self-torque is found in diverse physical systems (i.e., electrodynamics and general relativity), it was not realized that light could possess such a property. We demonstrate that extreme-ultraviolet self-torqued beams arise in high-harmonic generation driven by time-delayed pulses with different OAM. We monitor the self-torque of extreme-ultraviolet beams through their azimuthal frequency chirp. This class of dynamic-OAM beams provides the ability for controlling magnetic, topological, and quantum excitations and for manipulating molecules and nanostructures on their natural time and length scales. 
    more » « less